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Abstract

It is known that Hamiltonian equations of motion for low-dimensional chaotic systems are typically formulated

using fractional derivatives. The evolution of such systems is governed by the fractional diffusion equation, which

describes self-similar and non-Gaussian processes with strong intermittencies. We confirm, in this context, that the

dynamics of a Brownian particle driven by space-time dependent fluctuations evolves towards Hamiltonian chaos and

fractional diffusion. The corresponding motion of the particle has a time-dependent and nowhere vanishing accelera-

tion. Invoking the equivalence principle of general relativity leads to the conclusion that fractional diffusion is locally

equivalent to a transient gravitational field. It is shown that gravity becomes renormalizable as Newton’s constant

converges towards a dimensionless quantity.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Fractional diffusion equations have emerged in recent years as a powerful tool for the analysis of stochastic processes

and complex dynamics. In particular, fractional diffusion has been successfully linked to the study of Hamiltonian

chaos in low-dimensional systems [1–4,10,11]. In this work we investigate an unexpected connection that may be es-

tablished between Hamiltonian chaos and the classical theory of gravitation. The object of study is the Brownian

motion of a free non-relativistic particle evolving in an environment that is random and space-time dependent. Despite

its simplicity, this model offers a convenient benchmark for probing dissipative systems of higher complexity. 1

Our three main findings are that (i) fluctuations are capable of migrating Brownian motion into Hamiltonian chaos,

(ii) the Brownian particle moves as if subjected to a locally transient gravitational field and (iii) Newton’s constant

converges towards a dimensionless quantity as the dynamics makes the transition from fractional to the classical re-

gime. The last finding opens the door for full renormalization of the theory, in manifest contrast with quantum gravity.

The approach may be extended to include open dynamical systems and stochastic field models and may thus provide

valuable insights into the long-standing issue of unification in field theory [25–28]. This is particularly attractive in light

of the recently discovered decoherence mechanism responsible for the transition from quantum to classical behavior in

systems strongly coupled to their environment [6,7].

It is instructive to point out that our conclusions are consistent with El Naschie’s conjecture on the connection

between gravitation and the Cantorian topology of space–time on or above the Planck scale (MPl � 1019 GeV)
E-mail address: ervingoldfain@hotmail.com (E. Goldfain).
1 We recall that, in general, there is a large spectrum of persistent fluctuations that may perturb the evolution of any dynamical

system in a variety of physical settings. Examples include thermal fluctuations in statistical ensembles, Poincare resonances [21] and

vacuum fluctuations in quantum physics [8].
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[12,22,24]. Our results are also relevant for theories concerned with the statistical nature of gravitational interaction in

ultra-high energy physics. These models are based upon the prediction that the underlying structure of space–time

undergoes large stochastic fluctuations as a result of short-distance gravitational effects [29,30].

The outline of the paper is as follows: Section 2 derives the relationship between the Langevin equation of Brownian

motion and Hamiltonian chaos. A brief review of the classical Hamilton–Jacobi formalism is outlined in Section 3. The

generalization of Hamilton–Jacobi equation to fractional diffusion is presented in Section 4. Section 5 establishes the

explicit connection between Hamiltonian chaos and classical gravity. Renormalization is discussed in Section 6 and

concluding remarks are presented in Section 7.
2. Noise driven dynamics and Hamiltonian chaos

It is well known that classical Langevin equation describes the transport of a non-relativistic Brownian particle

moving in a dissipative and disordered environment [13]. Let m0 denote the mass of the particle, c the damping co-

efficient and gðx; tÞ the stochastic force exerted on the particle. If there are no external potentials and the motion takes

place in one dimension, the Langevin equation reads
2 It

must in
m0€xxþ c _xx ¼ gðx; tÞ ð1Þ
It is customary to assume that the stochastic force has a noise-like distribution characterized by a constant average and

a shift-invariant correlation function
hgðx; tÞi ¼ const:

hgðx; tÞgðx0; t0Þi ¼ Dwxðx� x0Þwtðt � t0Þ
ð2Þ
The fluctuation–dissipation theorem requires [13,14]
D � ckT ð3Þ
where D are the diffusion coefficient and T the temperature. 2

A convenient noise representation is provided by the delta-kicked model [15]. Under the most general circumstances,

the function gðx; tÞ may be factored as
gðx; tÞ ¼ fðxÞ
X1
n¼0

dðt � nsÞ ð4Þ
in which s ¼ 2p=X stands for the period separating successive kicks and the space-dependent amplitude is considered a

superposition of power terms
fðxÞ ¼
X1
m¼0

amxm ð5Þ
The sum of delta-kicks may be expanded in harmonics of X to obtain
X1
n¼0

dðt � nsÞ ¼ 1þ 2
X1
n¼1

cosðnXtÞ ð6Þ
In what follows we assume that, on a suitably chosen observation scale, the fundamental noise mode (n ¼ 1) is pre-

dominant and the rest of harmonics cancel out by destructive interference. As a result, the following condition holds
X1
n¼2

X1
m¼0

amxm cosðnXtÞ ! 0 ð7Þ
is important to emphasize that, according to the fluctuation–dissipation theorem, any system undergoing random perturbations

clude damping as a mechanism for relaxation towards thermal equilibrium.
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The Langevin model may thus be transformed into a set of coupled differential equations using the parameterization
y1 ¼ _xx

y2 ¼ _yy1 ¼
1þ 2 cosðy3tÞ

m0

X1
m¼0

amxm
 !

� c
m0

y1

y3 ¼ X

ð8Þ
The system (8) resembles the evolution equations for the damped driven pendulum [16]. It has a three-dimensional

phase space which is the minimum dimension required for the onset of chaos in solutions of differential equations.

According to the KAM theory, the winding number
w ¼
ffiffiffiffiffiffiffiffiffiffiffi
c

m0X
2

r
ð9Þ
controls the transition from unperturbed motion to weak and fully developed Hamiltonian chaos [16,17]. A manifest

example of such a transition is driving with a time-dependent noise frequency XðtÞ. The corresponding phase space has

a rich topological structure characterized by a mixture of periodic orbits layered between chaotic islands. Fluctuations

in the driving frequency generated over short time intervals lead to progressive instability and eventual breakup of

KAM tori [17,23]. It is of interest to mention that the last torus destroyed by noise corresponds to the most irrational

winding number, i.e. to the golden mean
/ ¼
ffiffiffi
5

p
� 1

2
ð10Þ
which is a key concept of the E1 theory (see [22] and included references).
3. Overview of the classical Hamilton–Jacobi formalism

It is instructive, at this point, to bridge the gap between the Langevin formalism previously outlined and the ca-

nonical approach of classical mechanics based on the Hamilton–Jacobi equation. Consider the previous example of a

free non-relativistic particle of mass m0 moving in one dimension from origin to ðx; tÞ. In the absence of any damping

and disorder, its trajectory is given by
xðtÞ ¼ _xxt ð11Þ
The action Sðx; tÞ satisfies the Hamilton–Jacobi equation [5]
oS
ot

þ 1

2m0

oS
ox

� �2

¼ 0 ð12Þ
and has the explicit form
Sðx; tÞ ¼ m0

2

x2

t
þ S0 ð13Þ
where S0 is an arbitrary additive constant. Setting
� oS
ot

¼ p2

2m0

¼ const:

p ¼ m0 _xx
ð14Þ
recovers the uniform motion expressed by (11).

As it is known, the Hamilton–Jacobi equation may be converted to a second-order partial differential equation

describing standard diffusion or wave propagation. To elaborate on this point we proceed by analogy with the path

integral formalism of quantum mechanics [8,31,32]. The probability amplitude for a given space–time path xðtÞ is given
by
q½xðtÞ� ¼ q0 expfiS½xðtÞ�g ð15Þ
Assuming that the technique of analytic continuation is applicable [9,32], (15) becomes
q½xðtÞ� ¼ q0 expf�SE½xðtÞ�g ð16Þ
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where SEð�Þ represents the Euclidean action. Taking into account that momentum is a constant of motion, or

o2SE=ox2 ! 0, the Hamilton–Jacobi equation (12) assumes the form
oq
ot

þ 1

2m0

o2q
ox2

¼ 0 ð17Þ
For sufficiently small space–time paths the probability amplitude is proportional to the action, that is
q½DxðtÞ� � q0f1� SE½DxðtÞ�g ð18Þ
We shall use relation (18) in the next section.
4. Generalization of Hamilton–Jacobi formalism to fractional diffusion

For the sake of clarity we briefly summarize results obtained so far. It was found in Section 2 that, if conditions

required by KAM theory are met, path dependent fluctuations are capable of migrating the classical Brownian motion

into Hamiltonian chaos. The adequate formulation of this noise-driven regime requires use of fractional space and time

derivatives. Section 3 has pointed out that the canonical treatment of motion in classical mechanics is based upon the

Hamilton–Jacobi equation. A natural question arises on how to properly apply the Hamilton–Jacobi formulation to

Hamiltonian chaos. This is the object of the current section.

Let P ðx; tÞ represent the probability density function of finding the particle at location x at instant t. Fractional
diffusion equation is defined by two critical exponents ða; bÞ corresponding to the space and time derivatives of Pðx; tÞ
[1,2]. To simplify the presentation and without any loss of generality, we set below m0 ¼ 1

2
in (17). Fractional diffusion of

the Brownian particle then takes the form
obP
otb

¼ oaP
ojxja þ

t�b

Cð1� bÞ dðxÞ ð19Þ
for positive time intervals t > 0 and point-like source functions [1,2,4]. Particular cases include Levy transport (b ¼ 1)

and fractal Brownian motion (0 < b < 1, a ¼ 2). The probability density stays positive if the range of the two exponents

is limited to the intervals below
0 < a6 2

0 < b6 1
ð20Þ
To simplify the formalism we adopt below the hypothesis that the integral over all possible paths connecting the

initial and final space-time points can be approximated by a single contribution arising from the most dominant path.

Let D represent the linear extent of the particle motion. Following Section 3, we note that Pðx; tÞ is equivalent to
P ðx; tÞ ¼ 1

D
q½xðtÞ�
q0

� �2

ð21Þ
and satisfies the normalization condition
Z 1

�1
Pðx; tÞdx ¼ 1 ð22Þ
For sufficiently small paths we have from (18)
P ðDx; tÞ � 1

D
1f � 2SE½DxðtÞ�g ð23Þ
which shows that, up to an additive constant and a scaling factor, the probability density function and Euclidean action

are identical. Under these circumstances, the asymptotic solution of the fractional diffusion equation (19) reads [2]
SE½DxðtÞ� �
�
� D

2

�
1

p
tb

jDxjaþ1

Cð1þ aÞ
Cð1þ bÞ sin

pa
2

" #
ð24Þ
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for ultra-short time intervals obeying
ðDxÞa � tb ð25Þ
Dimensional analysis of (24) in light of normalization (22) leads to
½t�b ¼ ½Dx�a ð26Þ
in which ½�� stands for the unit of time and space.
5. Fractional diffusion as locally transient non-inertial motion

We may naturally associate the following Hamilton–Jacobi equation to the Euclidean action (24) [18]:
Efr ¼ � obSE
otb

¼ m0

2

obðDxÞ
otb

� �2
ð27Þ
where Efr is the energy transported by the fractional diffusion process and obðDxÞ
otb generalizes the ordinary velocity cor-

responding to b ¼ 1. Hence
vfr ¼
obðDxÞ
otb

¼
ffiffiffi
2

p
D
Cð1þ aÞ sinðpa=2Þ

pjDxj1þa

" #1=2
ð28Þ
Following the rules of fractional differentiation [20], the generalized acceleration may be obtained from (28) as
afr ¼
obvfr
otb

¼ vfr
t�b

Cð1� bÞ ð29Þ
This expression indicates that the free Brownian particle undergoes a space-time dependent non-inertial motion for

t < 1. The fractional acceleration vanishes in the limit b ¼ 1 as Cð0Þ ! 1. According to the equivalence principle of

general relativity, a non-inertial frame of reference is locally identical to a gravitational field. We conclude that, under

the assumption that the equivalence principle holds for non-smooth trajectories, the statistical transport of the free

Brownian particle is locally equivalent to the action of a transient gravitational field. The next section attempts to show

that this field may be described by a renormalizable theory.
6. Dimensional analysis and renormalization

In the relativistic theory of gravitation Newton’s constant carries a negative mass dimension. Power expanding the

metric around the Lorentz solution leads to a non-polynomial action in this constant [19,32] (see Appendix A). As a

result, quantum gravity theories founded on general relativity are considered non-renormalizable. The object of this

section is to evaluate the impact of critical exponents ða; bÞ on renormalizability from arguments based on dimensional

analysis.

(26)–(28) may be used to determine the dimensions of energy, fractional velocity and mass starting from the scalar

nature of the Euclidean action. We find, respectively
½Efr� ¼ t�b

½vfr� ¼ ½Dx�½t��b ¼ ½Dx�1�a

½m0� ¼
½Efr�
½vfr�2

¼ ½Dx�a�2

ð30Þ
In order to include Newton’s constant in these considerations it is necessary to write down a fundamental field

equation. The most straightforward choice is the Poisson equation of classical field theory. Let Ufr and Gfr represent the

gravitational potential and coupling constant induced by fractional diffusion. The natural generalization of Poisson’s

equation in 1+ 1 space–time is
o2aUfr

oðDxÞ2a
¼ 4pGfrq ð31Þ
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where q is the equivalent source of Ufr, expressed in units of mass per unit of length. 3 Since the standard Poisson

equation is recovered in the limit a ¼ 1, it makes sense to change the upper bound in (20) such that 0 < a6 1. The

solution of (31) for a uniform source and subject to the boundary condition
3 A
UfrðDx ¼ 0Þ ¼ U0 ð32Þ
is supplied by [20]
UfrðDxÞ ¼ 4pGfrq
ðDxÞ2a

Cð2aþ 1Þ þ U0 ð33Þ
In general relativity the gravitational potential is dimensionless ([5] and Appendix A) which can be expressed as
½U� ¼ ½m0�0 ð34Þ
In the framework provided by fractional diffusion this constraint may be relaxed to a less restrictive requirement, that is
½Ufr� ¼ ½m0�cðaÞ ð35Þ
where cðaÞ represents an a-dependent exponent obeying
lim
a!1

cðaÞ ¼ 0 ð36Þ
It is apparent that condition (36) does not uniquely determine the explicit form of cðaÞ. For example, two choices from

the infinite span of possible solutions are
cðaÞ ¼ 1� a2

cðaÞ ¼ j ln aj
ð37Þ
As it is shown below, we use this redundancy to control the mass dimension of Gfr.

Since
½q� ¼ ½m0�
½Dx� ð38Þ
we obtain from (30), (33), (35) and (38)
½Gfr� ¼ ½m0�cðaÞ�
3ða�1Þ
a�2 ð39Þ
Demanding a positive or vanishing mass dimension in (39) amounts to
cðaÞP 3ða� 1Þ
a� 2

ð40Þ
which further restricts the space of acceptable functions cðaÞ.
Using (36) it is seen that condition (40) is automatically satisfied for a ! 1, that is, when the dynamics makes the

transition from fractional to the classical regime.

It is instructive to consider the particular choice cðaÞ ¼ j ln aj. Condition (40) leads to
a6 0:28683 ð41Þ
7. Concluding remarks

We have reported the close connection between Hamiltonian chaos and fractional diffusion, on the one hand, and

classical theory of gravitation on the other. It was found that fractional diffusion enables Newton’s constant to converge

towards a dimensionless quantity and creates the necessary framework for renormalization. The approach is built upon

the Hamilton–Jacobi formalism and may be thus extrapolated to a larger class of field theories. Our work complements
similar analysis may be carried out in 3+1 space–time. It involves a lengthy derivation and it is not included here.
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similar studies linking classical gravity to space–time fluctuations, as well as several papers on unification via fractal

topology [24–28].
Appendix A

For ease of reading we briefly review in this Appendix A some key points regarding the renormalization topic of

quantum gravity and related theories. Additional details may be found in [8,31,32].

The potential generated by a point mass m at a distance R in Newtonian gravitation is given by
u ¼ �G
m
R

ðA:1Þ
Let glm denote the components of the metric tensor (l; m ¼ 0, 1, 2, 3). The potential is a dimensionless quantity related to

the magnitude of g00, the temporal component of the metric tensor, via
g00 ¼ 1þ 2u ðA:2Þ
Because g00 and u are both dimensionless and since, in natural units, distance is measured as reciprocal of mass
½R� ¼ ½m��1 ðA:3Þ
it follows from (A.1) that Newton’s constant has a )2 mass dimension, that is
½G� ¼ ½m��2 ðA:4Þ
The negative mass dimension carried by G makes gravity non-renormalizable due to the following argument: the

probability amplitude for graviton-graviton scattering at a given energy E may be computed using the series expansion
amplitude � 1þ GE2 þ ðGE2Þ2 þ � � � ðA:5Þ
where different orders correspond to various Feynman diagrams. The series (A.5) is manifestly divergent and the re-

sulting scattering amplitude lacks physical meaning.

A similar argument may be brought up in conjunction with any attempt to quantize gravity by power expanding the

metric tensor glm around the Euclidean metric gð0Þlm (where gð0Þlm is referred to as the Lorentz solution)
glmðxÞ ¼ gð0Þlm þ
ffiffiffiffi
G

p
hlm ðA:6Þ
In the above, the metric deviations hlm are associated with the graviton field. Each term of the series contains derivatives

and an ever-increasing number of hlm fields and powers of G. The action series assumes the generic form
S � 1

16pG

Z
d4x½ohohþ hohohþ h2ohohþ � � �� ðA:7Þ
where space–time indexes l, m have been omitted for simplicity. The action expansion is not considered polynomial due

to the very existence of a non-scalar Newton constant.

Dimensional analysis indicates that a renormalizable theory must be characterized by a coupling constant having a

positive or vanishing mass dimension. Quantum electrodynamics, the electroweak model and quantum chromody-

namics are examples of renormalizable theories because the fine-structure constant and gauge couplings g1, g2 and g3
are dimensionless.
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